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T1: Permanent magnets

Part A: Interaction of two magnets.

(a) Since the distance between themagnets is big as com-
pared to their size, we can approximate each of them as
a dipole of magnitude

m =
π

4
d2hJ = 0.75Am2.

Since the two dipoles are parallel to each other and to
the line connecting them, the interaction energy of one
of the magnets with the field of the other magnet is

W = −B⃗ · m⃗ = −µ0m
2

2πL3
,

and by taking a derivative we obtain

F1 =
dW
dL =

3µ0m
2

2πL4
≈ 0.21mN.

a)m = π
4 d

2hJ 0.2 pts
b)W = −B⃗ · m⃗ 0.1 pts
c) F1 = dW

dL 0.1 pts
d) F1 = 3µ0m

2

2πL4 0.1 pts
Answer: 0.21mN 0.1 pts

(b) In the case of a homogeneous magnetization, the
molecular currents in the bulk of thematerial cancel out,
leaving only a surface current at the surfaces which are
not perpendicular to the magnetization vector. Henze,
there is a surface current on the side surfaces of the
cylinder. As the height of the surface is much smaller
than the radius, these currents can be approximated as a
ring current I; the dipole moment πd2I/4 of the ring cur-
rent must be equal to the total dipole moment πd2hJ/4
of the magnet, hence I = Jh ≈ 2.4kA.

a) currents inside cancel out,
surface currents remain 0.1 pts
c)m = IA 0.1 pts
d) I = Jh 0.1 pts
Answer: 2.4kA 0.1 pts

(c) Since the distance between the magnets is now sig-
nificantly smaller than their diameter, the force can be
approximately found as the force between two straight
currents I of length πd at distance L:

F2 =
µ0I

2

2πL
πd =

µ0I
2d

2L
≈ 14N.

a) Consider as straight currents 0.3 pts
b)B = µ0I

2πL 0.3 pts
c) F2 = πdIB 0.2 pts
d) F2 = µ0I

2d
2L 0.1 pts

Answer: 14N 0.1 pts

(d) The chain will most likely break below the top-
most magnet because then the magnetic pull between
the magnets needs to compensate the largest possible
weight. Let the number of magnets be N + 1, and the
mass of a single magnet M = π

6 ρδ
3 ≈ 0.5 g; then the

weight of the magnets F = MNg is balanced by the mag-
netic force

F =
3µ0m

2

2πδ4

N∑
n=1

1

n4
= µ0m

2π360δ4,

where m = π
6 Jδ

3 ≈ 78mAm2 and we have assumed that
N ≫ 1 so that we can assume in the sum N = ∞. From
the force balance we obtain

N =
µ0m

2π3

60Mgδ4
≈ 1320;

hence, the total length of the chain is Nδ = 6.6m. Note
that N = 1320 is indeed much bigger than 1.

a) It will break at the top 0.1 pts
b)M = π

6 ρδ
3 0.1 pts

c) F = MNg 0.2 pts
d) F = 3µ0m

2

2πδ4

∑N
n=1

1
n4 0.2 pts

e)m = π
6 Jδ

3 0.2 pts
f) N = µ0m

2π3

60Mgδ4 0.1 pts
Answer: 1260 0.1 pts

Remark: if the sum is substituted with a finite sum as an
approximation, with two or three terms in it, full marks
are given. If only one term is kept, subtract 0.1 from d)
or f).
(e) Each of the balls creates magnetic field of a dipolem;
the magnetic dipole creates the same field wich would
be created by two magnetic charges, equal by modulus
to q and of opposite sign, at a distance s = m/q, assum-
ing that this distance s is much smaller than the dis-
tance from the dipole to the observation point. Here it
is convenient to select s = δ (hence q = m/δ) because in
that case almost all the positive and negative magnetic
charges overlap and cancel out each other. The only
ones which will not cancel out are the magnetic charges
at the chain’s endpoints. One of these charges is very far
so that the field at P is the field of a magnetic charge at
O:

B =
µ0q

4πr2
=

µ0m

4πδr2
=

Jµ0δ
2

24r2
.

a) Idea of magnetic charges 0.4 pts
b)q = m/δ 0.4 pts
c) B = µ0q

4πr2 0.4 pts
d) B = Jµ0δ

2

24r2 0.3 pts

Part B: Interaction of magnets with ferro-
magnetic materials.

(a) Due to the boundary condition at the surface of the
ferromagnet, the field lines must enter the plates almost
perpendicularly. Indeed, as it follows from the Ampère’s
circutal law, the tangential component of B⃗/µ is conti-
nous at the surface of a ferromagnet; similarly, the Gauss
law for the magnetic field implies that the normal com-
ponent of theB-field is continuous. From these two facts,
one can derive the “refraction law” for the field lines,
tanα = µ tanβ, where α and β are the angles between
the tangents of a field line and the surface normal, inside
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and outside of the ferromagnetic, respectively. From the
fact that µ ≫ 1 we can deduce that as long as α is not
small, β ≈ π/2. Those field lines which enter the plate
must exit it somewhere, this happens somewhere far-
ther away from the magnet, see the sketch below.

1  

2  
3  

2  

a) Field line 1 correct 0.2 pts
b) Field line 2 correct 0.4 pts
c) Field line 3 correct 0.4 pts

Remarks:
i) Subtract 0.1 both from b) and c) if the field line does
not enter the plate perpendicularly;
ii) Subtract 0.1 both from b) and c) if the field line does
not refract;
iii) Subtract 0.1 both from b) if its segment rightwards of
the magnet is not shown;
iv) Subtract 0.1 both from a) and c) if the field line does
not form a closed loop.
(b) The problem can be solved by introducing an image
magnet— amirror reflection of the real magnet with re-
spect to the surface of the plate, with the dipole moment
being both reflected and flipped. With this image mag-
net, the boundary condition above the plate is satisfied:
the field lines enter the plate perpendicularly. Hence,
the force and torque exerted to the realmagnet are equal
to the force and torque exerted by the image magnet.
The equilibrium is achieved when the dipole is parallel
to thefield created by the imagemagnetwhich is the case
when the dipole moment is perpendicular to the plate.
The force is almost the same as what was already found
in part A(d), with the only difference that now there is
only the first term in the sum:

F =
3µ0m

2

2πδ4
= 5.9N.

a) Idea of magnetic image 0.3 pts
b) Correct direction of the image J⃗ 0.2 pts
c) F = 3µ0m

2

2πδ4 0.2 pts
d) F = 5.9N 0.1 pts
e) each correct tick 0.1 pts
f) each incorrect tick -0.1 pts

Remark: if the sum of d) and e) is negative, e) is taken
and minus d) yielding 0 in total.
(c) As explained above, the magnetic field lines are per-
pendicular to the surface of the ferromagnetic plate.
Since the gap is narrow as compared to its width, the
field lines are inside the gap almost straight. Due to the
Ampére’s circulation theorem it alsomeans that the field
in the gap is homogeneous. Due to the Ampére’s circula-
tion theorem, field outside the gap vanishes as the gap’s

width tends to 0, so in the limit all flux through the per-
manent magnet wraps around through the gap; see the
sketch of magnetic field lines. Now, let us recall that the
disc magnet is equivalent to a surface current of density
J along the curved surface of the disc. Hence we can
write the circulation theorem along the loop defined by
one of the field lines shown in the figure:

I =

∮
H⃗ · dr⃗ ≈ (B1 +B2)h/µ0,

where B1 and B2 denote the flux density inside the per-
manent magnet and outside the magnet (but still inside
the slit), respectively. Here we have neglected the con-
tribution of the magnetic field inside the ferromagnetic
plate to the integral because µ is very big. Due to the
Gauss law, π

4 d
2B1 = π

4 (D
2−d2)B2; withD = 2d this yields

B1 = 3B2. Thus, B2 = Iµ0/4h = Jµ0/4 = 0.375T and
B1 = 1.125T. In order to find the force exerted to one
of the ferromagnetic plates, we can notice that the force
does not depend on what is creating the magnetic field
and, hence, we can substitute the disc magnet with the
current I in a superconducting ring. Next we apply the
virtual displacement method and increase the distance
between the plates by dx. In the case of a superconduct-
ing ring, themagnetic flux through the ring is conserved,
and therefore, the magnetic field strength inside the gap
will remain unchanged during the virtual displacement.
With all this information we are ready to calculate the
change of the magnetic field energy. The magnetic field
energy inside the ferromagnet can be neglected because
its density is ca µ times smaller than inside the gap. So,
the energy is changed only because the volume of the
gap is changed:

dW =
π

8µ0
[d2B2

1 + (D2 − d2)B2
2 ]dx =

3π

2µ0
B2

2d
2

which means that the force

F =
dW
dx =

3π

2µ0
B2

2d
2 =

3π

32
J2µ0d

2 ≈ 210N.

a) B⃗ in the slit is homogeneous 0.2 pts
b) B⃗ in the permanent magnet is homog. 0.2 pts
c) B⃗ in slit and in perm. magn. is normal 0.1 pts
e)I = (B1 +B2)h/µ0 0.2 pts
f) π

4 d
2B1 = π

4 (D
2 − d2)B2 0.2 pts

g) B2 = Iµ0/4h 0.1 pts
h) B1 = 3Iµ0/4h 0.1 pts
i) dW = π

8µ0
[d2B2

1 + (D2 − d2)B2
2 ]dx 0.1 pts

j) F = dW
dx 0.1 pts

k) 3π
32 J

2µ0d
2 0.1 pts

l) F ≈ 210N. 0.1 pts
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Part C: Model of ferromagnetic and anti-
ferromagnetic materials.
(a) Since the task is about finding only one configuration
of dipoles, we can just try looking for configurations sat-
isfying the requirements. The simplest approach is to
start construction with the chain of magnets described
in part A(d): if all the dipoles are directed parallel to
each other and parallel to the chain, the system is obvi-
ously in equilibrium. Now, two such chains can be par-
allel to each other, and they can be also antiparallel. In
both cases, each of the balls is in a stable equilibrium
in terms of rotations. Indeed, each of the balls from the
left and from the right contribute the field B⃗1 = x̂ µ0m

2πδ3 ,
while each of the balls from above and below contribute
B⃗2 = ± 1

2 B⃗1, where x̂ denotes a horizontal unit vector; ’+´
corresponds to antiparallel rows, and ’−´ — to parallel
rows. SinceB2 < B1, the sum of the four contributions is
always pointing in the direction of x̂ which ensures the
rotational stability of the magnet. Attraction force be-
tween two neighbouring rows is contributed only by the
vertical nearest-neighbour pairs of balls, so we can just
calculate only the interaction force between two such
magnets. If two such balls were to be at distance y, the
interaction energy would be W = ±µ0m

2

4πy3 so that the y-
directional force Fy = dW

dy = ∓ 3µ0m
2

4πy4 . Thismeans that the
two balls attract if they are antiparallel and repel other-
wise. This brings us to the conclusion that the ordermust
be antiferromagnetic, shown below in the sketch.

The work needed to pull out one of the magnets is eas-
ily found as its interaction energy with the four near-
est neighbours, with minus sign, i.e. W = B⃗ · m⃗, where
B⃗ = 2B⃗1 + 2B⃗2 = 3µ0m

2πδ3 x̂ so thatW = 3µ0m
2

2πδ3 = 29mJ.

a) Fig: left and right parallel magnets attract 0.1 pts
b) Fig: top and bottom antipar. magn. attract 0.1 pts
c) B⃗ from the 4 neighbours ∥ m⃗ ⇒ no torque 0.1 pts
d) correctly marked 12 arrows 0.1 pts
e) antiferromagnetic 0.1 pts
f)W = B⃗ · m⃗ 0.1 pts
g)W = 3µ0m

2

2πδ3 0.1 pts
h)W = I29mJ 0.1 pts

Remark: no marks for d) if any of the magnets has a
wrong direction or has no arrow.

(b) Now we need to repeat the steps done for the pre-
vious question, with the only difference in the mutual
placement of the magnets. Also, each of the magnets
of the top row interacts now with two magnets of the
bottom row with the three magnets forming a equilat-
eral triangle. Since we’ll be going to use virtual displace-
ment method, we consider the interaction of three mag-
nets forming an isosceles triangle as shown in the figure;
while the base of the triangle remains fixed during vir-
tual displacements, the length of the sides l will change.

First we need an expression of themagnetic field caused
by the two bottom magnets at the centre of the topmost
magnet. Due to symmetry, this field must be horizontal;
we can use the formula provided in the problem text for
finding it. The dipole moment of the left-bottom magnet
needs to be divided into components parallel and per-
pendicular to the radius vector drawn from its centre
to the centre of the topmost magnet, m∥ = m cosα and
m⊥ = m sinα. Hence, we can express the resultant x-
component of the magnetic field as

B⃗3x =
µ0

4πl3
(2m⃗∥ cosα− m⃗⊥ sinα) =

µ0m⃗

4πl3
(3 cos2 α− 1).

The magnetic field due to both magnets is therefore
2B3xx̂.
As the first thing, we can now analyse the stability of a

magnet with respect to rotations. As before, we assume
that the magnets in one single row are parallel to each
other, and the magnets at the two neighbouring rows
are either parallel or antiparallel to each other. In either
case, the rows at the top and at the bottom from a given
magnet are parallel to each other; let them be oriented
along x̂. Then, each row contributes 2B3xx̂ to the total
field at the position of our magnet. The total field has
also contributions B⃗4x = ± µ0

2πδ3 from the left and right
magnets; here ‘+’ corresponds to the ferromagnetic or-
der, and ‘−’ — to the antiferromagnetic order. Keeping
in mind that l = δ and cosα = 1

2 the total field is

B⃗5 = 4B⃗3x + 2B⃗4x =
µ0m

2πδ3

(
−1

2
± 2

)
x̂.

This is parallel to the given magnetic dipole for both ‘+’
and ‘−’, which ensures stability in any case.
With m⃗ = ±x̂m and y denoting the height of the isosce-

les triangle, the vertical component of the interaction
force of a magnet with a magnet in the bottom row can
be found as

F5y =
d
dy B⃗3 · m⃗ = ± dl

dy
d
dl

µ0m
2

4πl3

(
3δ2

4l2
− 1

)
= ∓ dl

dy
3µ0m

2

16πδ3
;

here we have used cosα = δ
2l and upon taking deriva-

tive, substituted l = δ. For this force to be attractive, we
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need a minus sign which corresponds to the ferromag-
netic order (keep inmind that dl

dy > 0). Nowwe are ready
tomark the direction of the dipoles on the sketch, see the
figure below.

The work needed to pull out a magnet is found simi-
larly to the part (a):

W = B⃗5 ·mx̂ =
3µ0m

2

4πδ3
= 15mJ.

a) B⃗3x = µ0m⃗
4πl3 (3 cos2 α− 1) 0.2 pts

b) B⃗4x = ± µ0

2πδ3 0.1 pts
c) B⃗5 = 4B⃗3x + 2B⃗4x 0.1pts
d) B⃗5 = µ0m

2πδ3

(
− 1

2 ± 2
)
x̂. 0.1 pts

e)F5y = d
dy B⃗3 · m⃗ 0.1 pts

f) F5y = ∓ dl
dy

3µ0m
2

16πδ3 0.1 pts
g) F5y attractive 0.1 pts
d) correctly marked 12 arrows 0.1 pts
e) ferromagnetic 0.1 pts
g)W = 3µ0m

2

4πδ3 0.1 pts
h)W = I15mJ 0.1 pts

Remark: ± signes are not required as long as the cor-
rect sign corresponding to the ferromagnetic order are
used.


